sábado, 29 de septiembre de 2012

informatica

informatica

El vocablo informática proviene del alemán informatik acuñado por Karl Steinbuch en 1957. Pronto, adaptaciones locales del término aparecieron en francés, italiano, español, rumano, portugués y holandés, entre otras lenguas, refiriéndose a la aplicación de las computadoras para almacenar y procesar la información. Es una contracción de las palabras information y automatic (información automática). En lo que hoy día conocemos como informática confluyen muchas de las técnicas, procesos y máquinas (ordenadores) que el hombre ha desarrollado a lo largo de la historia para apoyar y potenciar su capacidad de memoria, de pensamiento y de comunicación. En elDiccionario de la lengua española de la Real Academia Española se define informática como:
Conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de ordenadores.


lambda máyúscula grandeRatón Microsoft Tastenmaus representando la interacción hombre-máquinaGráfico del algoritmo QuicksortTetera de Utah representando la computación gráfica

Conceptualmente, se puede entender como aquella disciplina encargada del estudio de métodos, procesos, técnicas, desarrollos y su utilización en ordenadores (computadoras), con el fin de almacenar, procesar y transmitir información y datos en formato digital. En 1957 Karl Steinbuch acuñó la palabra alemana Informatik en la publicación de un documento denominado Informatik: Automatische  Informations verarbeitung (Informática: procesamiento automático de información). En ruso,Alexander Ivanovich Mikhailov fue el primero en utilizar informatika con el significado de «estudio, organización, y la diseminación de la información científica», que sigue siendo su significado en dicha lengua.[cita requerida]. En inglés, la palabra Informatics fue acuñada independiente y casi simultáneamente por Walter F. Bauer, en 1962, cuando Bauer cofundó la empresa denominada «Informatics General, Inc.». Dicha empresa registró el nombre y persiguió a las universidades que lo utilizaron, forzándolas a utilizar la alternativa computer science. La Association for Computing Machinery, la mayor organización de informáticos del mundo, se dirigió a Informatics General Inc. para poder utilizar la palabra informaticsen lugar de computer machinery, pero la empresa se negó. Informatics General Inc. cesó sus actividades en 1985, pero para esa época el nombre de computer science estaba plenamente arraigado. Actualmente los angloparlantes utilizan el término computer science, traducido a veces como «Ciencias de la computación», para designar tanto el estudio científico como el aplicado; mientras que designan como information technology ( o data processing, traducido a veces como «tecnologías de la información», al conjunto de tecnologías que permiten el tratamiento automatizado de información.


Orígenes


Actualmente es difícil concebir un área que no use, de alguna forma, el apoyo de la informática. Ésta puede cubrir un enorme abanico de funciones, que van desde las más simples cuestiones domésticas hasta los cálculos científicos más complejos. Entre las funciones principales de la informática se cuentan las siguientes:
  • Creación de nuevas especificaciones de trabajo
  • Desarrollo e implementación de sistemas informáticos
  • Sistematización de procesos
  • Optimización de los métodos y sistemas informáticos existentes
  • facilita la automatización de datos.




Sistemas de tratamiento de la información

Los sistemas computacionales, generalmente implementados como dispositivos electrónicos, permiten el procesamiento automático de la información. Conforme a ello, los sistemas informáticos deben realizar las siguientes tres tareas básicas:
Entrada: captación de la información.
Proceso: tratamiento de la información.
Salida: transmisión de resultados.

Computador Z3

Konrad Zuse (1992).
El computador Z3, creado por Konrad Zuse, fue la primera máquina programable y completamente automática, características usadas para definir a un computador. Estaba construido con 2200 relés electromecánicos, pesaba 1000 kg, para hacer una suma se demoraba 0,7 segundos y una multiplicación o división, 3 segundos. Tenía una frecuencia de reloj de 5 Hz y una longitud de palabra de 22 bits. Los cálculos eran realizados con aritmética de coma flotante puramente binaria. La máquina fue completada en 1941 y el 12 de mayo de ese mismo año fue presentada a una audiencia de científicos en Berlín. El Z3 original fue destruido en 1944, durante un bombardeo de los aliados a Berlín. Posteriormente, una réplica completamente funcional fue construida durante los años 60 por la compañía del creador Zuse KG, y está en exposición permanente en el Deutsches Museum. En 1998 Raúl Rojas demostró que el Z3 es Turing completo.





biotecnologia

biotecnologia  


La biotecnología es la tecnología basada en la biología, especialmente usada en agriculturafarmaciaciencia de los alimentos,medio ambiente y medicina. Se desarrolla en un enfoque multidisciplinario que involucra varias disciplinas y ciencias como biología,bioquímicagenéticavirologíaagronomíaingenieríafísicaquímicamedicina y veterinaria entre otras. Tiene gran repercusión en lafarmacia, la medicina, la microbiología, la ciencia de los alimentos, la minería y la agricultura entre otros campos. Probablemente el primero que usó este término fue el ingeniero húngaro Károly Ereki, en 1919, quien la introdujo en su libro Biotecnología en la producción cárnica y láctea de una gran explotación agropecuaria.


Aplicaciones

La biotecnología tiene aplicaciones en importantes áreas industriales como lo son la atención de la salud, con el desarrollo de nuevos enfoques para el tratamiento de enfermedades; la agricultura con el desarrollo de cultivos y alimentos mejorados; usos no alimentarios de los cultivos, como por ejemplo plásticos biodegradablesaceites vegetales y biocombustibles; y cuidado medioambiental a través de la biorremediación, como el reciclaje, el tratamiento de residuos y la limpieza de sitios contaminados por actividades industriales



Las aplicaciones de la biotecnología son numerosas y suelen clasificarse en:
  • Biotecnología blanca: también conocida como biotecnología industrial, es aquella aplicada a procesos industriales. Un ejemplo de ello es la obtención de microorganismos para producir un producto químico o el uso de enzimas como catalizadores industriales, ya sea para producir productos químicos valiosos o destruir contaminantes químicos peligrosos (por ejemplo utilizando oxidorreductasas). También se aplica a los usos de la biotecnología en la industria textil, en la creación de nuevos materiales, como plásticos biodegradables y en la producción de biocombustibles. Su principal objetivo es la creación de productos fácilmente degradables, que consuman menos energía y generen menos desechos durante su producción.8 La biotecnología blanca tiende a consumir menos recursos que los procesos tradicionales utilizados para producir bienes industriales.
  • Biotecnología verde: es la biotecnología aplicada a procesos agrícolas. Un ejemplo de ello es la obtención de plantas transgénicas capaces de crecer en condiciones ambientales desfavorables o plantas resistentes a plagas y enfermedades. Se espera que la biotecnología verde produzca soluciones más amigables con el medio ambiente que los métodos tradicionales de la agricultura industrial. Un ejemplo de esto es la ingeniería genética en plantas para expresar plaguicidas, con lo que se elimina la necesidad de la aplicación externa de los mismos, como es el caso del maíz 
  • Biotecnología azul: también llamada biotecnología marina, es un término utilizado para describir las aplicaciones de la biotecnología en ambientes marinos y acuáticos. Aún en una fase temprana de desarrollo sus aplicaciones son prometedoras para la acuicultura, cuidados sanitarios, cosmética y productos alimentarios.

Ventajas

Entre las principales ventajas de la biotecnología se tienen:
  • Rendimiento superior. Mediante los OGM el rendimiento de los cultivos aumenta, dando más alimento por menos recursos, disminuyendo las cosechas perdidas porenfermedad o plagas así como por factores ambientales.
  • Reducción de pesticidas. Cada vez que un OGM es modificado para resistir una determinada plaga se está contribuyendo a reducir el uso de los plaguicidas asociados a la misma que suelen ser causantes de grandes daños ambientales y a la salud.



Riesgos para el medio ambiente

Entre los riesgos para el medio ambiente cabe señalar la posibilidad de polinización cruzada, por medio de la cual el polen de los cultivos genéticamente modificados (GM) se difunde a cultivos no GM en campos cercanos, por lo que pueden dispersarse ciertas características como resistencia a los herbicidas de plantas GM a aquellas que no son GM.22 Esto que podría dar lugar, por ejemplo, al desarrollo de maleza más agresiva o de parientes silvestres con mayor resistencia a las enfermedades o a los estreses abióticos, trastornando el equilibrio del ecosistema.

Riesgos para la salud

Existen riesgos de transferir toxinas de una forma de vida a otra, de crear nuevas toxinas o de transferir compuestos alergénicos de una especie a otra, lo que podría dar lugar a reacciones alérgicas imprevistas.
Existe el riesgo de que bacterias y virus modificados escapen de los laboratorios de alta seguridad e infecten a la población humana o animal.



nanotecnologia

nanotecnologia



La nanotecnología es un campo de las ciencias aplicadas dedicado al control y manipulación de la materia a una escala menor que un micrómetro, es decir, a nivel de átomos y moléculas . Lo más habitual es que tal manipulación se produzca en un rango de entre uno y cien nanómetros. Se tiene una idea de lo pequeño que puede ser un nanobot sabiendo que un nanobot de unos 50 nm tiene el tamaño de 5 capas de moléculas o átomos -depende de qué esté hecho el nanobot-.
Nano es un prefijo griego que indica una medida no un objeto; de manera que la nanotecnología se caracteriza por ser un campo esencialmente multidisciplinar, y cohesionado exclusivamente por la escala de la materia con la que trabaja.

Las industrias tradicionales podrán beneficiarse de la nanotecnología para mejorar su competitividad en sectores habituales, como textil, alimentación, calzado, automoción, construcción y salud. Lo que se pretende es que las empresas pertenecientes a sectores tradicionales incorporen y apliquen la nanotecnología en sus procesos con el fin de contribuir a la sostenibilidad del empleo. Actualmente la cifra en uso cotidiano es del 0.2 %. Con la ayuda de programas de acceso a la nanotecnología se prevé que en 2014 sea del 17 % en el uso y la producción manufacturera.

Nanotecnología avanzada

La nanotecnología avanzada, a veces también llamada fabricación molecular, es un término dado al concepto de ingeniería de nanosistemas (máquinas a escala nanométrica) operando a escala molecular. Se basa en que los productos manufacturados se realizan a partir de átomos.

Aplicaciones actuales

Nanotecnología aplicada al envasado de alimentos

Una de las aplicaciones de la nanotecnología en el campo de envases para alimentación es la aplicación de materiales aditivados con nanoarcillas, que mejoren las propiedades mecánicas, térmicas, barrera a los gases, entre otras; de los materiales de envasado. En el caso de mejora de la barrera a los gases, las nanoarcillas crean un recorrido tortuoso para la difusión de las moléculas gaseosas, lo cual permite conseguir una barrera similar con espesores inferiores, reduciendo así los costos asociados a los materiales.
           Representación animada de un nanotubo de carbono.


viernes, 21 de septiembre de 2012

Historia de la computadora


GENERACIONES DE LAS COMPUTADORAS

Esta clasificación se emplea poco ya, y además el criterio para determinar cuando se dio el cambio de una generación a otra no está claramente definido, aunque proponemos que al menos debieran cumplirse los dos requisitos estructurales :
·          Cambios estructurales en su construcción.
·         Avances significativos en la forma de comunicación con las computadoras.

Primera Generación

El arranque de la industria de la computación se caracteriza por un gran desconocimiento de las capacidades y alcances de las computadoras.  Por ejemplo, según un estudio de esa época, se suponía que iban a ser necesarias alrededor de 20 computadoras para saturar la capacidad del mercado de Estados Unidos en el campo del procesamiento de datos.  Esta primera etapa abarcó la década de 1950 y se conoce como la primera generación de computadoras.  Las maquinas de esta generación cumplen los requisitos antes mencionados de la siguiente manera:
·         Su construcción estaba basada en circuitos de tubos de vacío o bulbos.
·         La comunicación se establecía por medio de programación en lenguaje máquina (binario).
Estos aparatos son grandes y costosos (Decenas o cientos de miles de dolares).

En 1951 aparece la primera computadora comercial, es decir fabricada para ser vendida: La INIVAC I (UNIVersal Computer).  Esta maquina, que disponía de 1000 palabras de memoria central y podía leer cintas magnéticas, se utilizó para procesar los datos del censo de 1950 en Estados Unidos.

Durante la primera generación ( y hasta parte de la tercera), las unidades de entrada estaban por completo dominadas por las tarjetas perforadas.  A la UNIVAC I siguió una máquina desarrollada por IBM(Internacional Bussiness Machines), que apenas incursionaba en el campo; es la IBM 701.  Hubo otras máquinas que competían con ella, de diferentes compañías.  La más exitosa de las computadoras fue el modelo 650 de IBM, de la cual se produjeron varios cientos.

Esta tenía un sistema de memoria secundaria llamado tambor magnético, antecesor de  los discos empleados actualmente.

La competencia contestó con modelos UNIVAC 80 y 90, que pueden situarse ya en los inicios de la segunda generación.     





 





martes, 18 de septiembre de 2012

innovacion

innovación

Trabajos  de  innovación.
Ciencia  y tecnología
vTanto la ciencia como la tecnología implican un proceso intelectual, ambas se refieren a relaciones causales dentro del mundo material y emplean una metodología experimental que tiene como resultado demostraciones empíricas que pueden verificarse mediante repetición. La ciencia, al menos en teoría, está menos relacionada con el sentido práctico de sus resultados y se refiere más al desarrollo de leyes generales; pero la ciencia práctica y la tecnología están inextricablemente relacionadas entre sí. La interacción variable de las dos puede observarse en el desarrollo histórico de algunos sectores .
imagen Innovación
de  ciencia y  tecnología

Tecnología  en  la  edad antigua
vLos artefactos humanos más antiguos que se conocen son las hachas manuales de piedra encontradas en África, en el este de Asia y en Europa. Datan, aproximadamente, del 250.000 a.C., y sirven para definir el comienzo de la edad de piedra. Los primeros fabricantes de herramientas fueron grupos nómadas de cazadores que usaban las caras afiladas de la piedra para cortar su comida y fabricar ropa y tiendas. Alrededor del 100.000 a.C., las cuevas de los ancestros homínidos de los hombres modernos, contenían hachas ovaladas, rascadores, cuchillos y otros instrumentos de piedra que indicaban que el hacha de mano original se había convertido en una herramienta para fabricar otras herramientas. Muchos miembros del reino animal utilizan herramientas, pero esta capacidad para crear herramientas que, a su vez, sirvan para fabricar otras distingue a la especie humana del resto de los seres vivos.
Tecnología antigua
Tecnología  moderna
Una de las innovaciones más importantes en el proceso de telares fue introducida en Francia en 1801 por Joseph Jacquard. Su telar usaba tarjetas con perforaciones para determinar la ubicación del hilo en la urdimbre. El uso de las tarjetas perforadas inspiró al matemático Charles Babbage para intentar diseñar una máquina calculadora basada en el mismo principio. A pesar de que la máquina no se convirtió nunca en realidad, presagiaba la gran revolución de las computadoras de la última parte del siglo XX.